Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Macromolecular architecture is a critical parameter when tuning polymer material properties. Although the implementation of non-linear polymers in different applications has grown over the years, polymer grafted surfaces such as nanoparticles have traditionally been composed of linear thermoplastic polymers, with a limited number of examples demonstrating a diversity in polymer architectures. In an effort to combine polymer architecturally dependent material properties with polymer grafted particles (PGPs), as opposed to conventional methods of tuning polymer grafting parameters such as the number of chains per surface area (i.e., polymer graft density), a series of bottlebrush grafted particles were synthesized using surface-initiated ring-opening metathesis polymerization (SI-ROMP). These bottlebrush PGPs are composed of glassy, semi-crystalline, and elastomeric polymer side chains with controlled backbone degrees of polymerization (Nbb) at relatively constant polymer graft density on the surface of silica particles with diameters equaling approximately 160 or 77 nm. Bottlebrush polymer chain conformations, evaluated by measuring the brush height of surface grafted polymer chains in solution and the melt, undergo drastic changes in macromolecular dimensions in different environments. In solution, brush heights increase linearly as a function of Nbb, consistent with fully stretched chains, which is confirmed using cryogenic transmission electron microscopy (Cryo-TEM). Meanwhile, brush heights are consistently at a minimum in the melt, indicative of chains collapsed on the particle surface. The conformational extremes for grafted bottlebrush polymers are unseen in any linear polymer chain systems, highlighting the effect of macromolecular architecture and surface grafting. Bottlebrush grafted particles are an exciting class of materials where diversifying polymer architectures will expand PGP material design rules that harness macromolecular architecture to dictate properties.more » « less
-
The tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to “dial-in” the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in deformation mechanism providing enhanced performance are unknown. Here, in situ small-angle X-ray scattering (SAXS) measurements during uniaxial extension reveal distinct deformation mechanisms between a commercially available linear poly(styrene)-poly(butadiene)-poly(styrene) (SBS) triblock copolymer and the grafted SBS version containing grafted poly(styrene) (PS) chains from the poly(butadiene) (PBD) mid-block. The neat SBS (φSBS = 100%) sample deforms congruently with the macroscopic dimensions with the domain spacing between spheres increasing and decreasing along and traverse to the stretch direction, respectively. At high extensions, end segment pullout from the PS-rich domains is detected, which is indicated by a disordering of SBS. Conversely, the PS-grafted SBS that is 30 vol% SBS and 70% styrene (φSBS = 30%) exhibits a lamellar morphology and in situ SAXS measurements reveal an unexpected deformation mechanism. During deformation there are two simultaneous processes: significant lamellar domain rearrangement to preferentially orient the lamellae planes parallel to the stretch direction and crazing. The samples whiten at high strains as expected for crazing, which corresponds with the emergence of features in the two-dimensional SAXS pattern during stretching consistent with fibril-like structures that bridge the voids in crazes. The significant domain rearrangement in the grafted copolymers is attributed to the new junctions formed across multiple PS domains by the grafts of a single chain. The in situ SAXS measurements provide insights into the enhanced mechanical properties of grafted copolymers that arise through improved physical crosslinking that leads to nanostructured domain reorientation for self-reinforcement and craze formation where fibrils help to strengthen the polymer.more » « less
An official website of the United States government
